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treated dipolar spheres in the bulk [1] and near surfaces [2],
and then extended their algorithms to more sophisticatedWe have developed robust and efficient numerical methods for

solving integral equation theories for electrolyte solutions. These models of spheres with embedded dipoles and quadrupoles
methods are hybrids of Newton–Raphson and Picard iterations and [3]. The algorithm described in Ref. [2] has recently been
have been obtained as extended versions of the previous methods applied to dipolar hard spheres near a metallic wall [4].for pure solvents by solving nontrivial problems posed by the inclu-

These studies, however, have never included ions (anionssion of ions. Bulk electrolytes and electrolytes near both inert and
and cations) in the system. It is generally recognized thatmetallic surfaces are considered. The basic equations previously

derived for a one-component fluid near a planar wall are extended a numerical method often becomes quite unstable once
to a multicomponent fluid. Analytical expressions for elements of highly charged ions are included in the solvents [1, 2]. The
the Jacobian matrices are arranged in compact form. A striking

objective of the present article is to extend earlier methodsfeature of the method for surface problems is that the Jacobian is
to electrolyte solutions, mixtures of solvent molecules anddetermined only from bulk properties. A discussion of some special

treatments that need to be considered for asymmetric anions and ions, without deterioration in the convergence properties
cations is included. These methods have been demonstrated using of the numerical methods. Although the basic equations
the full reference hypernetted-chain theory for various sizes of ions are described for mixtures of dipolar hard spheres (solvent
in a wide range of ionic concentrations. Q 1996 Academic Press, Inc.

molecules) and charged hard spheres (ions), they can
readily be adapted to other related models.

Since the pair interactions are angle-dependent and theI. INTRODUCTION
system of interest comprises multiple components, the ba-
sic equations derived are very complicated. In the presentThere has been considerable interest in analyzing the
article, reliable numerical methods are obtained by judi-structure of electrolyte solutions near both uncharged and
cious application of the Newton–Raphson method. Thecharged surfaces. A goal is to develop a completely molecu-
Newton–Raphson method is applied only to the variableslar description of the electrical double layer which plays
which govern convergence properties. Techniques to re-an important role in various fields of physics and chemistry.
duce the number of variables are employed, and care isIn these studies, it is doubtless that the integral equation
taken so that the Jacobian matrix can be calculated analyti-theories are very attractive. Among currently available
cally. The analytical expressions are manipulated so thattheories, we are particularly interested in the reference
the matrix can be calculated quite efficiently using the fasthypernetted-chain (RHNC) theory. There are several sub-
Fourier transform (FFT) method.jects to be investigated such as the development of a molec-

In the present article, we consider 1 : 1 electrolyte solu-ular model for water, the mathematical reduction of the
tion near uncharged inert and metallic surfaces. When theOrnstein–Zernike (OZ) equation to a tractable form, the

construction of reliable bridge functions, and the develop- surface is inert and the ions are ‘‘symmetrical’’ (i.e., the ion
ment of robust and efficient numerical methods for solving diameters are equal), the density profile near the surface is
the basic equations. The present article is concerned with identical for both anions and cations. However, at a metal-
the last subject. lic surface or when the ion diameters differ, the wall–anion

Robust and efficient algorithms were already developed and wall–cation density profiles differ. In the latter cases,
by Kinoshita and Harada for pure solvents. They first special numerical considerations are required. The present

article describes some details of the numerical methods
used in a previous publication [5] in which theoretical re-

1 Permanent address: Nuclear Chemical Engineering Research Section, sults for the structure of metal-electrolyte solution inter-Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan.
faces are reported. The readers should refer to Ref. [5] for2 Present address: Centre de Recherche en Calcul Appliqué, 5160 Bou-

levard Decarie, Bureau 400, Montreal, Quebec, Canada H3X 2H9. numerical results obtained using the present method.
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II. BULK ELECTROLYTE SOLUTIONS where the rotational invariants F depend only on the angu-
lar coordinates and m 1 n 1 l must be even for projections

Integral equation theories for multicomponent systems hmnl
ab to be nonzero.

are defined by two relationships connecting the pair and
direct correlation functions, h and c, respectively. These A. Numerical Method
are the Ornstein–Zernike (OZ) equation

In solving the integral equations numerically, we iterate
on the functions cab(12) and hab(12) 5 hab(12) 2 cab(12)
which have the projectionshab(12) 2 cab(12) 5 O

c

rc

8f 2 E hac(13)ccb(32) d(3), (1a)

xmnl
ss (r), x0nn

1s (r), x0nn
2s (r), x000

11 (r), x000
12 (r), x000

22 (r),
and an appropriate closure approximation which can be
written in general as where x denotes c or h, the subscripts s, 1, and 2 denote

the ‘‘solvent,’’ ‘‘cation,’’ and ‘‘anion’’ species, respectively,
hab(12) 2 cab(12)

(1b) and the superscripts m, n, and l are defined in Eq. (2). In
numerical solution, the expansion in Eq. (2) is truncated5 ln[hab(12) 1 1] 1 uab(12)/kBT 2 bR

ab(12),
for maximum values of m and n. The convergence proper-
ties of the integral equations are governed primarily bywhere the numbers 1, 2, and 3 in parenthesis denote the
the nonzero projections with m and n # 1 (i.e., thosecoordinates of particles of species a, b, and c, respectively,
occurring in the mean spherical approximation (MSA))and the sum is over all particle species. u is the pair interac-
and includetion, kBT is the Boltzmann constant times the temperature

and bR is an approximation for the bridge diagrams [6]. A
x000

ss (r), x011
ss (r), x110

ss (r), x112
ss (r), x000

1s (r), x011
1s (r),

(3)general theoretical formalism for solving these equations
x000

2s (r), x011
2s (r), x000

11 (r), x000
12 (r), and x000

22 (r).for molecular systems has been developed by Fries, Ku-
salik, and Patey [7, 8] and implemented using a Picard

However, we note that c011
ss (r) and h011

ss (r) make only minoriteration strategy. However, the Picard method is charac-
contributions to the rate of convergence unless the anionterized by a slow rate of convergence. Hence, using the
and cation diameters are very different and the concentra-same general formalism Kinoshita and Harada [1, 2] have
tion is high. The importance of the remaining projectionsdeveloped a more efficient numerical algorithm for a pure
with m and n # 1 is related to the pair potential whichsolvent system which is a hybrid of the Picard and Newton–
has projectionsRaphson iteration strategies.

The numerical algorithm is to some extent system depen-
u000

ss (r), u112
ss (r), u000

1s (r), u011
1s (r), u000

2s (r),dent and the extension of the method to the case of a
u011

2s (r), u000
11 (r), u000

12 (r), and u000
22 (r).multicomponent mixture of solvent molecules and ions

requires special consideration. In this paper, we consider
a mixture in which the solvent molecules are represented In addition, the convergence properties are influenced
as hard spheres with embedded point dipoles and the ions mainly by the short-range contributions to the projections
are represented as hard spheres with embedded point in Eq. (3). Hence, we apply the Newton–Raphson method
charges—the so-called ‘‘civilized’’ model of an electrolyte to selected projections only for r # Dab (Dab , dab , dab 5
solution. Furthermore, our results are restricted to 1 : 1 (da 1 db)/2; a, b 5 s, 1 and 2, and da is the hard-sphere
electrolytes. However, the discussion can readily be ex- diameter of component a). In the regime where the hard-
tended to mixed valence electrolytes, ‘‘soft’’ spheres or sphere cores overlap, the potential is
more sophisticated solvent models such as spheres with
embedded dipoles and quadrupoles [3, 9] and we will con- u000

ab (r) 5 y, r , dab , (4)
sider such system in the future. For a detailed discussion
of the numerical method, the reader is referred to Refs. and the closure equation is simply cab(12) 5 21 2 hab(12)
[1, 3]. Here, we should point out that in solving the integral [1]. It is found that only the 10 projections
equation theories for molecular species, the pair functions
(for example, h) are expanded using rotational invariants h000

ss (r), h110
ss (r), h112

ss (r), h000
1s (r), h011

1s (r),
(5)[7]. For a pair of linear molecules as an example, the expan- h000

2s (r), h011
2s (r), h000

11 (r), h000
12 (r), and h000

h22(r),
sion is

for r # Dab need to be treated specially by decomposing
them into ‘‘coarse’’ (atz) and ‘‘fine’’ (Dhti) variables [10]hab(12) 5 Oy

m50
Oy
n50

Om1n

l5um2nu
hmnl

ab (r)Fmnl(12), (2)
using the projective representation
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hti 5 Okt

z51
atz Ptzi 1 Dhti . (6)

­ftz

­asy
5 dtsdzy 2

­a9tz

­asy (9)

(t, s, 5 1, ..., 10; z 5 1, ..., kt , y 5 1, ..., ks)
For notational simplicity, the 10 discretized projections in
Eq. (5) are denoted by hti for ‘‘projection t’’ (t 5 1, ..., 10) ­a9tz

­asy
5 Oksibs21

j51
Psyj Oktibt21

i50
Qtzi

­h9ti

­hsj
, (10)

at r 5 i dr (i 5 0, 1, ..., N 2 1) for a grid spacing of dr,
Ptzi is the discretized zth basis function for projection t at
r 5 i dr and kt is the number of roof basis functions for where dij is the Kronecker delta function and the partial
projection t. The 10 projections for r . Dab , Dhti and all derivative ­h9ti/­hsj is given by
the other projections of c and h constitute the fine vari-
ables. For a given approximation of the fine variables, the
coarse variables atz are solved using the Newton–Raphson

­h9ti

­hsj
5 ON21

p51

­h9ti

­h̃tp

­h̃tp

­c̃sp

­c̃sp

­csj

­csj

­hsj
, (11a)

iteration strategy. The fine variables are then updated using
the Picard method and the cycle is repeated until the vari- ­csj

­hsj
5 21. (11b)ables are converged. One cycle of the Newton–Raphson

calculation can be summarized as follows:

Here, h̃1p denotes, for example, h̃000
ss (pdk) and h̃000

ss (k) is1. Starting with initial ‘‘input’’ values of the coarse
the Hankel transform of h000

ss (r). Equation (11b) is basedvariables atz , construct hti from Eq. (6).
on the fact that the closure equation for r , dab has the2. Calculate the projections of cab(12) using a closure
very simple form mentioned above. Because of Eq. (11b),approximation to the OZ equation. The RHNC closure is
the expression for ­h9ti/­hsj is reduced to Eq. (11a). As aused in the present article.
result, the analytical expressions for the elements of the

3. Calculate c̃mnl
ab (12), the Hankel transforms [7] of Jacobian matrix can be derived with no difficulty.

cmnl
ab (12). The partial derivative ­h̃tp/­c̃sp can be derived by

applying ‘‘matrix calculus’’ to the OZ equation as ex-4. Using the OZ equation, calculate h̃mnl
ab (12), the Han-

plained in Appendix A. By examining the OZ equationkel transform of hmnl
ab (12).

arranged in matrix form, we note that some of the elements5. Calculate hmnl
ab (12), the back Hankel transforms [7]

of the Jacobian matrix are zero and it can be shown thatof h̃mnl
ab (12). The newly calculated values of hti are denoted

­h̃m9n9l9
a9b9 (k)/­c̃mnl

ab (k) is zero when one of the pairs (b9, n9)by h9ti . or (b, n) is (s, 0) and the other is (s, 1). For instance,
6. Evaluate new ‘‘output’’ values of the coarse vari-

ables a9tz by decomposing h9ti from
­h̃000

ss (k)

­c̃ 011
1s (k)

5
­h̃000

1s (k)

­c̃ 110
ss (k)

5
­h̃000

ss (k)

­c̃ 110
ss (k)

5
­h̃000

ss (k)

­c̃ 011
1s (k)

5 ? ? ? 5 0.

a9tz 5 Oktibt21

i50
h9tiQtzi , (7)

Thus, many elements of the Jacobian matrix are zero. This
results in a considerable saving in computation time needed
to construct the matrix. The derivative ­c̃sp/­csj can bewhere Qtzi are the discretized conjugate basis functions
derived by expressing the forward hat and Fourier trans-determined from Ptzi and the prime denotes output values
forms [7] in discrete form. It should be noted that only forfrom the present cycle. We use the roof basis functions
s 5 3 do we have ĉ112

ss (i dr) ? c112
ss (i dr) [1, 7], where ‘‘ˆ’’for Ptzi [1] with unit height and width 2ibtdr. It should be

denotes the hat transform. For s 5 5 and 7, the Fourieremphasized that kt and ibt may differ for different projec-
transform has a more complicated form [7]. Thus, for s 5tion pairs t and this is an additional complication for multi-
3, 5, and 7, special considerations are needed in derivingcomponent systems.
­c̃sp/­csj . The derivative ­h9ti/­h̃tp can be derived from the

The Newton–Raphson iteration solves for the roots of discretized back Fourier and hat transforms. Similar con-
siderations are needed for t 5 3, 5, and 7. Analytical expres-
sions for ­h9ti/­hsj (obtained from Eq. (11)) are arranged

ftz 5 atz 2 a9tz (t 5 1, ..., 10; z 5 1, ..., kt). (8) so that the FFT technique can be applied directly to the
calculations. The final expressions thus obtained are given
in Appendix B for a few representative projection pairs tA major concern in this method is the derivation of

analytical expressions for the Jacobian matrix having ele- and s.
The basic iteration strategies for the inner Newton–ments
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TABLE I using a Jacobian matrix of dimension 120 and starting from
the results for d1 5 0.84ds , d2 5 1.16ds , and r*1 5 r*2 5Systems considered in the present work. In the macroparticle
0.0125 (a simple model for 0.945M NaCl), the result for aand wall cases the surface is in contact with a solution of total
new ionic concentration of r*1 5 r*2 5 0.0250 was obtainedreduced density r* 5 0.7. The reduced solvent dipole moment

and ionic charge are e*2 5 3 and q*1 5 2q*2 5 8, respectively. in 29 Picard iterations and a total of 35 Newton–Raphson
The solvent diameter ds was taken to be 2.8 Å. The label ‘‘Eq’’ iterations. The numerical method exhibits similar conver-
represents an ion with a diameter equal to the solvent diameter. gence properties when the solvent is modeled as a hard

sphere with embedded dipole and quadrupole moments
Salt d1/ds d2/ds r*s r*6 Molarity

and the ions are modeled as above but with a full ionic
charge at 298K (q*1 5 2q*2 5 14.1527).none 0.7 0 0

LiI 0.68 1.44 0.675 0.0125 0.945 When the anion and cation diameters differ, the odd l
NaCl 0.84 1.16 0.675 0.0125 0.945 projections of the dipole–dipole correlation functions are

0.6 0.05 3.78 not zero. Table II shows the contact values for several
0.5 0.1 7.56

representative projections of the total correlation functionEqEq 1.0 1.0 0.675 0.0125 0.945
and gives us an idea of the degree of the contribution fromRbF 1.16 0.84 0.675 0.0125 0.945

0.6 0.05 3.78 the odd l projections. The table shows for the ionic charge
0.5 0.1 7.56 tested that the contribution from the odd l projections is

CsF 1.28 0.84 0.675 0.0125 0.945 small, except when the ion diameters differ greatly and
CsI 1.28 1.44 0.675 0.0125 0.945

the ionic concentration is very high.

III. ELECTROLYTE SOLUTIONS NEAR A
Raphson and outer Picard loops are similar to those de- MACROPARTICLE
scribed in Ref. [1]. The Picard iteration is considered con-

A. Numerical Methodverged once

In this section, we consider the three component ion–
dipole mixture near a macroparticle m at infinite dilution.Eout 5

1
Nfine

ONfine

i51
UV new

i 2 V old
i

V new
i

U, 1024, (12)
Since, rm 5 0, the OZ equation decouples into two sets of
equations describing the bulk particle–particle correlation
functions (as discussed in Section II) and the macro-where V old

i and V new
i represent the Nfine fine variables be-

particle–particle correlation functions.fore and after a single Picard iteration.
Following the usual reduction of the bulk OZ equationEven for mixtures of spheres with embedded dipoles,

[7, 12], the macroparticle OZ equation can be reduced toquadrupoles, and higher multipole moments and charged
expressions of the formspheres [8], the same 10 projections (Eq. (5)) need to be

decomposed into coarse and fine variables in the manner
defined above. Analytical expressions for the Jacobian ma- Ñ 0n

ms(k) 5 rs O
n1

H̃ n1n
ss (k)C̃ 0n1

ms (k),
trix can also be derived in virtually the same manner.

B. Numerical Examples 1 O
a51,2

raH̃ 0n
as (k)C̃ 00

ma(k), (13a)

We tested the numerical method for the several example
Ñ 00

mb(k) 5 rs O
n1

(2)n1H̃ 0n1bs (k)C̃ 0n1
ms (k)systems listed in Table I. In all cases, the reduced dipole

moment squared of the solvent, e*2 5 e2/kBTd3
s 5 3.0,

the reduced charge of the ions, q*1 5 2q*2 5 q/kBTds)1/2 5
1 O

a51,2
raH̃ 00

ab(k)C̃ 00
ma(k),

8.0, and the total reduced number density, r* 5 rd3
s 5

r*s 1 r*1 1 r*2 5 0.7 (where ra is the number density of
b 5 1, 2, (13b)component a) were held constant and the ion diameters

and relative concentrations were varied [11].
where Ñ 0n

mb(k), C̃ 0n
mb(k), and H̃ n1n

a b (k) (a, b 5 s, 1, and 2)Using this method, we observed the following conver-
are the x transforms (evaluated at x 5 0) of h̃0nn

mb (k),gence properties. When a converged result is used as the
c̃ 0nn

mb (k), and h̃n1nl
ab (k) which in turn are the Hankel trans-initial guess for a similar condition, convergence is

forms of h0nn
mb (r), c0nn

mb (r), and hn1nl
a b (r), respectively [7, 12].achieved in only a few tens of the total Newton–Raphson

Also, we have used the definition f mnl 5iterations using the same Jacobian matrix (calculated once
for the initial condition). In other words, only one calcula- Ï(2m 1 1)(2n 1 1). Much of the numerical method is simi-

lar to the bulk case and will not be repeated here.tion of the Jacobian matrix is needed and, for example,
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TABLE II into coarse and fine variables as in Section II. Analytical
expressions for the Jacobian matrix needed in the Newton–Contribution of two major odd projections for the dipole-
Raphson iteration can be derived in a manner similar todipole pair. In this table, contact values for several projections
that used in the bulk case. However, since the bulk andof the total correlation function are compared. Projections with

m, n # 4 are included. The RHNC theory is used with Lee- macroparticle OZ equations are decoupled, we find that
Levesque [18] bridge functions (dr 5 0.01ds , N 5 4096, f mnl 5 the Jacobian matrix is a constant (defined by the bulk
l!/(m n l

0 0 0 ) , where f mnl is a nonzero constant in the rotational correlation functions). As a result, the set of equations to
invariant expansion [12]). be solved in the Newton–Raphson loop is linear for the

independent variables chosen and is solved exactly fromSystem h011
ss h121

ss h022
ss h044

ss h330
ss

the Jacobian matrix (i.e., it is independent of the initial
0.945M EqEq 0.000 0.000 1.850 0.015 0.401 guess and no iteration is required).
0.945M NaCl 0.029 0.054 1.858 0.015 0.409
3.78M NaCl 0.094 0.162 1.504 0.008 0.317
7.56M NaCl 0.144 0.256 1.234 0.004 0.266
0.945M LiI 0.079 0.138 1.870 0.016 0.438 B. Numerical Examples

We have found that the convergence properties for
the macroparticle–particle and wall–particle system are
similar, except that an additional iterative loop must be

In the numerical solution, care must be taken when the considered in the wall case (see Sections IV.A and IV.B).
cation and anion diameters are different. For the dipole– Hence, a more detailed discussion of the convergence
dipole pair, the projections with (n1 1 n 5 odd) are not properties will be given in Section IV.B. Here, we briefly
zero and must be included. For the macroparticle–solvent summarize the convergence properties for the macroparti-
and macroparticle–ion pair correlation functions, the odd cle systems.
n projections are also not zero. In addition, we should The numerical method was tested for macroparticles of
point out that in this case c000

m1(0) and c000
m2(0), even in the diameter dm 5 10ds and dm 5 30ds in several of the bulk

limit dm R y, are functions of h011
ms (r) and [h000

m1(r) 2 electrolyte solutions listed in Table I. Although the number
h000

m2(r)] as shown in Appendix C and cannot be calculated of grid points for r # Dma that are decomposed into coarse
until the equations are solved. Because a unique algorithm and fine parts is large, the dimensionality of the Jacobian
is used in the planar limit dm R y, this feature requires matrix can be greatly reduced by an appropriate choice of
special treatment for the wall case as discussed in Sections basis functions. In the case of the roof basis functions,
IV.A and IV.B. When the cation and anion diameters choosing larger values of ibt will drastically reduce the di-
are equal, the projections with (n1 1 n 5 odd) for the mensionality of the Jacobian matrix [3]. In all cases, the
dipole–dipole pair are zero. However, with an electric field ideal gas condition is sufficient as an initial guess of the
near the surface the odd-n projections of the macro- macroparticle–particle correlation functions.
particle–solvent and macroparticle–ion pair are not zero In the case of an inert macroparticle, we obtained con-
and the special treatment mentioned above is again re- vergence in about 10 Picard iterations (each consisting
quired. of a single Newton–Raphson step). By incorporating a

If we consider the general case when the macroparticle positive electric field (generated by a neutral metallic wall
generates an electrostatic field, then the nonzero projec- [4, 5]) emanating from the macroparticle, we also tested
tions of the macroparticle–particle interactions are several cases where the macroparticle was not inert but
u000

ms (r), u011
ms (r), u000

m1(r), and u000
m2(r), and it is expected metallic. In this case, the direct macroparticle–particle pair

that the convergence properties of the macroparticle– interaction for an uncharged macroparticle is relatively
particle equations are governed mainly by the projections short-ranged and is attractive for anions and repulsive for

cations with u000
m1(r) 5 2u000

m2(r). Even for strong electric
fields [4, 5] outside of contact, convergence was achievedh000

ms (r), h011
ms (r), h000

m1(r), and h000
m2(r) (14)

in 20 to 25 Picard iterations.
The two values c000

m1(0) and c000
m2(0) are obtained from the

self-consistent solution. As shown in Appendix C, in thefor r # Dma . We note that since the Newton–Raphson
method is applied only to the projections for r # Dma and limit dm R y, these values can also be calculated by inte-

grating h000
ms (r) and r[h000

m1(r) 2 h000
m2(r)]. A good check ofthe closure equation in this range has the very simple form

discussed previously the projections of the direct correla- the algorithm is to see if the results from the two methods
agree with each other for large dm . We have verified fortion functions at all separations are not included in the

independent variables. Hence, the above four projections dm 5 30ds that the two results are almost identical (the
discrepancy is about 0.1%).for r # Dma are treated specially by decomposing them
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IV. ELECTROLYTE SOLUTIONS NEAR Ñ 00(1)
wb (k) 5 rs O

n1

(2)n1H̃ 0n1bs (k)C̃ 0n1(1)
ws (k)

A PLANAR WALL

1 O
a51,2

raH̃ 00
a b(k)C̃ 00(1)

wa (k), (17b)A. Basic Equations

The mathematical reduction of the wall-particle OZ
b 5 1, 2,equation and the numerical solution are significantly

anddifferent from the bulk and macroparticle cases as a
result of the one-dimensional nature of the wall. The

h0nn(2)
wc (z . 0) 5 22f O

a5s,1,2
rac000

wa (2y)
(18)

basic reduction of the OZ equations for a one-component
fluid near a wall has already been described [13, 2, 3]
and the reader is referred to this earlier work for details. 3 Er

uzu
r2Sn(z, r)h0nn

ac (r) dr,
The extension of these equations to a multicomponent
fluid is not difficult.

whereAs in earlier work, using the hybrid algorithms near
a planar surface [2–4], we choose the origin such that
the surface is at zw and apply the approximation Ñ0n(1)

wc (k) 5
(2)n

Ï2n 1 1
h̃0nn(1)

wc (k), (19a)
c0nn

wb (z , 0) 5 c0nn
wb (2y) (b 5 s, 1, 2) for the wall–particle

direct correlation functions. When the origin (z 5 0) is
C̃ 0n(1)

wc (k) 5
(2)n

Ï2n 1 1
c̃0nn(1)

wc (k), c 5 s, 1, 2, (19b)set sufficiently deep inside the wall, this approximation
is essentially exact and we have verified that results for
zw 5 5ds/2 and zw 5 3ds/2 are almost indistinguishable.

h̃0nn(1)
wc (k) and c̃0nn(1)

wc (k) are the one-dimensional FourierBefore proceeding, we define c0nn(1)
wb (z) and c0nn(2)

wb (z)
transforms of h0nn(1)

wc (z) and c0nn(1)
wc (z), respectively, andas

the bulk functions H̃ mn
ab (k) are defined in Section III.A.

The function Sn is defined in Ref. [13].
In our formulation, c000

w1 (2y) and c000
w2 (2y) are treated

as input and, as in the case of very large macroparticles,c0nn(1)
wb (z) 5Hc0nn

wb (z), z $ 0,

0, z , 0,
(15a)

they can be written as (see Appendix C)

c000
w1 (2y) 5 21 1 rs c̃000

1s (0) 1 r1 c̃000;SR
11 (0)c0nn(2)

wb (z) 5H0, z $ 0,

c0nn
wb (2y), z , 0,

(15b)

1 r2 c̃000;SR
12 (0) 2 L, (20a)

where c000
w2 (2y) 5 21 1 rs c̃000

2s (0) 1 r1 c̃000;SR
21 (0)

1 r2 c̃000;SR
22 (0) 1 L, (20b)

c0nn
wb (z) 5 c0nn(1)

wb (z) 1 c0nn(2)
wb (z), (15c)

where it is assumed that the anions and cations are equally
charged and c000;SR is defined in Eq. (C5). Since L dependsand note that c0nn

ws (2y) 5 0 for n ? 0. It follows that [2,
on the wall–particle correlations, c000

w1 (2y) and c000
w2 (2y)3, 13]

are unknown until the wall calculation is finished (L 5 0
only when the anion and cation diameters are equal and

h0nn
wb (z) 5 h0nn(1)

wb (z) 1 h0nn(2)
wb (z), (16) there is no electric field). However, this minor problem

can be solved readily by incorporating an additional itera-
tive loop in the numerical method as discussed in the fol-where h0nn

wb (z) are the projections of hwb(1) 5 hwb(1) 2
lowing section.cwb(1).

Arranging the OZ equation [2, 13] yields expressions of B. Numerical Method
the form

The numerical method for the wall problem is obtained
after judiciously extending the previous version for pure

Ñ 0n(1)
ws (k) 5 rs O

n1

H̃ n1n
ss (k)C̃ 0n1(1)

ws (k)
(17a)

solvents [2, 3] to electrolyte solutions. Again, it is based on
the hybrid Newton–Raphson and Picard iteration strategy.

We derive more convenient forms of the back Fourier1 O
a51,2

raH̃ 0n
as (k)C̃ 00(1)

wa (k),
transforms of Eq. (17) so that analytical expressions for
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the Jacobian matrix can readily be derived. Noting that h000
ws (i dz), h011

ws (i dz), h000
w1 (i dz), and h000

w2 (i dz) (24)
H̃n1n

ss (k) (n1 1 n 5 odd) and H̃0n
as (k) (a 5 6; n 5 odd) are

purely imaginary [8, 7], we get are treated specially by decomposing them into coarse and
fine variables for 0 # z # zw 1 Da/2 , zw 1 da/2 (zw 5
5ds/2), using the projective representation (6). These fourN 0n(1)

ws (z) 5 rs O
n15even

O1[H̃ n1n
ss (k), C 0n1(1)

ws (z)]
projections are denoted by hti (t 5 1, ..., 4), respectively.
Denoting the coarse variables for hti by atz (z 5 1, ..., kt),

1 rs O
n15odd

O2[2IH̃ n1n
ss (k), C 0n1(1)

ws (z)] we summarize one cycle of the Newton–Raphson iteration
(where the fine variables are held constant) as follows:

1 O
a51,2

raO1[H̃ 0n
as (k), C 00(1)

wa (z)], 1. Starting from the input values of the coarse variables
atz , construct hti from Eq. (6).

for even n, (21a) 2. Calculate the projections c0nn(1)
wb (z), for example,

from the RHNC closure.N 0n(1)
ws (z) 5 rs O

n15even
O2[2H̃ n1n

ss (k), C 0n1(1)
ws (z)]

3. Calculate the sine and cosine transforms of
c0nn(1)

wb (z).
1 rs O

n15odd
O1[H̃ n1n

ss (k), C 0n1(1)
ws (z)]

4. Calculate h0nn(1)
wb (z) from Eqs. (21)–(23).

5. Calculate h90nn
wb (z) from Eq. (16).

1 O
a51,2

raO2[2IH̃ 0n
as (k), C 00(1)

wa (z)], 6. Evaluate the new output values of the coarse vari-
ables a9tz by decomposing h9ti from Eq. (7).

for odd n, (21b)
The Newton–Raphson method solves for the roots of

N 00(1)
wb (z) 5 rs O

n15even
(2)n1O1[H̃ 0n1bs (k), C 0n1(1)

ws (z)]

ftz 5 atz 2 a9tz (t 5 1, ..., 4; z 5 1, ..., kt). (25)
1 rs O

n15odd
(2)n1O2[2IH̃ 0n1bs (k), C 0n1(1)

ws (z)]
The elements of the Jacobian matrix are expressed as in
Eqs. (9) and (10), except that t, s 5 1, ..., 4. Equations

1 O
a51,2

raO1[H̃ 00
a b(k), C 00(1)

wa (z)], b 5 1, 2,
(21)–(23) are then expressed in discrete form and analyti-
cal expressions for the partial derivatives, ­h9ti/­hsj are de-

(21c) rived by extending the procedure described in Ref. [2] to
electrolyte solutions. It turns out that the expressions fall

where I 5 Ï21, O1 and O2 are defined as into only two different forms as explained in Appendix D.
We note that the Jacobian matrix is determined from the
bulk functions alone and is just part of the input data.
Hence, Eq. (25) is linear for the independent variablesO1[F̃ (k), G(z)] 5

1
f SEy

0
F̃ (k)Ỹc(k) cos(kz) dk

chosen, and it is exactly solved by the Newton–Raphson
method in a single step. Thus, the great advantages of the

1 Ey

0
F̃(k)Ỹs(k) sin(kz) dkD , (22a) numerical method reported for pure solvents [2, 3] are

totally preserved, even in the present case. In addition, in
the Picard iteration, we have never come across a case

O2[F̃ (k), G(z)] 5
1
f SEy

0
F̃ (k)Ỹc(k) sin(kz) dk where a mixing parameter smaller than one is needed.

The numerical method for the wall calculation already
includes a Picard iteration and a single Newton–Raphson

2 Ey

0
F̃(k)Ỹs(k) cos(kz) dkD , (22b) step. However, since L in Eq. (20) is not known a priori,

an additional iteration must be included to evaluate the
equations for a self-consistent value of L. A reliable

Ỹc(k) 5 Ey

0
G(z) cos(kz) dz, (23a) method is to find L satisfying the charge neutrality con-

dition
Ỹs(k) 5 Ey

0
G(z) sin(kz) dz, (23b)

CN 5 Ey

0
[h000

w1 (z) 2 h000
w2 (z)] dz, (26)

and F̃ (k) is real.
As in the macroparticle case, the four projections where we assume that q*1 5 2q*2 . The root of this equation
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TABLE III(CN(L) 5 0) is solved using Newton’s method with the
derivative dCN/dL evaluated numerically. The algorithm Converged values of L. The metallic wall is uncharged and the
is organized such that L is iterated as the most outer itera- values of rs for the jellium wall [5, 14] is 2.65a0 . The RHNC
tion step (i.e., L is held constant during the Picard iteration theory is used and the bridge functions are estimated by a

modified version of the Henderson-Plischke parameterization [5,of the fine variables.) Charge neutrality is considered satis-
19] (dz 5 0.01ds , N 5 4096).fied once uCNu is smaller than 1027. We note that L 5 0

only when the wall is inert and the anion and cation diame-
System Inert wall Metallic wallters are equal.

0.453M EqEq 0.000 8.767
0.945M EqEq 0.000 8.724C. Numerical Examples
3.78M EqEq 0.000 8.555
0.945M NaCl 20.195 8.645In the present section, we consider the numerical method
3.78M NaCl 21.020 7.581and convergence properties of both inert and metallic walls
7.56M NaCl 22.151 6.316

in contact with the bulk electrolyte solutions listed in Table 0.453M RbF 0.072 8.821
I. A detailed discussion of the results for these systems is 0.945M RbF 0.195 8.911

3.78M RbF 1.020 9.736presented in Ref. [5].
7.56M RbF 2.151 11.03After the calculation is complete and a converged value
0.945M LiI 20.518 8.449of L is obtained, c000

w1 (2y) and c000
w2 (2y) are calculated

0.945M CsF 0.303 9.011
from Eq. (20). These values must approach c000

m1(2y) and 0.945M CsI 20.171 8.672
c000

m2(2y), respectively, in the limit dm R y. We have veri-
fied that this requirement is satisfied for dm 5 30ds . Hence,
we are confident in our computing procedures for both
the macroparticle and wall problems. needed even in the presence of the metal field. The reliabil-

When the anion and cation diameter are equal and the ity of the algorithm did not deteriorate for all systems
wall is inert, the iteration over L is not necessary. In these and concentrations studied. This observation is in marked
cases, the ideal gas distribution as an initial guess of the contrast with the situation reported for conventional nu-
wall–particle correlation functions always led to conver- merical methods where hundreds of iterations are required
gence in about 10 Picard iterations. In all other cases, with a careful setting of the starting point [15, 16] and often
the iteration over L must be included. Although, for the fail to give converged solutions for significantly asymmetric
systems studied, only three to six iterations over L were anions and cations [17].
needed to reach convergence. Since CN is a monotonic Table III shows the converged values of L for the systems
function of L, the initial value of L is not important. The studied. An understanding of the degree of asymmetry can
first iteration usually gave a solution CN(L) P 0. Two to be obtained from these values. In the inert wall case, L is
four Picard-loop iterations were required to evaluate the negative for d1 , d2 and positive for d1 . d2 . In the
derivative dCN/dL. metallic wall case where a positive electrostatic field is

As an example, the wall–particle correlation functions present, L is positive for all systems tested.
were solved for 0.945M NaCl in the ground state self-
consistent field of a simple quantum mechanical metallic V. CONCLUSION
wall [4, 5, 14]. The average bulk electron density n, repre-
sented by the Wigner–Seitz radius rs 5 (4fn/3)1/3, was The algorithms previously developed for pure solvents

have been extended to mixtures of solvent molecules and2.65ao , where ao is the Bohr radius, and we assumed a
temperature of 2988K. Starting from the ideal gas condition ions by solving significant problems posed by the inclusion

of ions. The extended versions are hybrids of the Newton–for the wall–particle correlation functions and using a Ja-
cobian matrix of dimension 119, five iterations over L were Raphson and Picard iteration methods. The analytical ex-

pressions derived for the Jacobian matrix are compactneeded to obtain convergence. In the first iteration over
L, 25 Picard loop iterations were needed. In the second, despite the complexity of the basic equations. The dimen-

sionality of the matrix is sufficiently small for numericalthird, fourth, and fifth iterations, the number of Picard
iterations needed was 6, 4, 4, and 4, respectively. In all, 59 calculations. It is demonstrated that the robustness and

efficiency of the previous algorithms does not deterioratePicard (and Newton–Raphson) iterations were needed.
(Again, only one Newton–Raphson step is needed for each with the inclusion of ions. Two types of numerical methods

have thus been obtained for bulk fluids and fluids near sur-Picard iteration.) This number decreased to 35 when there
was no external field. When the result obtained for similar faces.

The numerical method for the surface problem is partic-characteristics was used as the initial guess (such a result
is usually available), only about 30 Picard iterations were ularly powerful, making the integral equation theories a
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very attractive means of analyzing the surface-induced where U is the unit matrix and r, C̃x , and Ñx are defined
by Kusalik and Patey [8]. Applying matrix calculus to Eq.structure of electrolyte solutions. The Jacobian matrix is

determined only by the bulk parameters and remains con- (A3), we obtain
stant in the calculation of the macroparticle—fluid and
wall–fluid correlation functions. That is, any change in

(dÑx)(i2j) 5 OJ

v51
OJ

w51
[(dC̃x)(i2v)(k)(v2v)(C̃x)(v2w)(Ẽx)(w2j)the surface and surface-particle parameters (including the

interaction potential) has no influence on the Jacobian
matrix. The ideal gas condition was successful as the initial 1 (D̃x)(i2v)(k)(v2v)(dC̃x)(v2w)(Ẽx)(w2j)], (A4a)
guess of the wall–particle correlation functions in all cases
studied. The Newton–Raphson step is solved exactly in a D̃x 5 C̃x 1 Ñx , (A4b)
single step, independently of the initial guess. There is no
need to use a mixing parameter smaller than one in the where J in the dimensionality of the matrices and (C̃x)(i2j)outer Picard loop (direct iteration is adequate). When is the (i, j) element of C̃x . Then it can be shown that
anions and cations are not symmetrical or an electric field
is present in a planar surface, an additional iteration step is
required. This treatment assures satisfaction of the charge ­(Ñx)(i2j)

­(C̃x)(v2w)

5 FOJ

n51
div(k)(w2w)(C̃x)(w2n)(Ẽx)(n2j)

(A5)
neutrality condition which proved to be essential in the
self-consistent calculation for the whole metal–solution
system [5]. 1 (D̃x)(i2v)(k)(v2v)(Ẽx)(w2j)G .

The numerical methods are expected to prove very use-
ful in further studies of the electrical double layer. In fact,
they are currently being used successfully in studies of Ñ mn

a b,x( p dk) and C̃ mn
a b,x( p dk) are real for m 1 n 5 even

metal–solution interfaces [4, 5]. and purely imaginary for m 1 n 5 odd. However, there
is no need to use complex numbers in computer program-
ming. The arithmetic operations are performed as if theAPPENDIX A: ANALYTICAL EXPRESSIONS
numbers were all real with the exception that when a prod-FOR ­h̃tp/­c̃sp

uct of two pure imaginary numbers occur the result is
In general, ­h̃m9n9l9

a9b9 (k)/­c̃mnl
ab (k) is given by simply multiplied by (21). Taking care in handling pure

imaginary numbers, Eqs. (A1), (A2), (A3c), (A4b), and
(A5) allow us to calculate analytically the partial deriva-­h̃m9n9l9

a9b9 (k)

­c̃mnl
a b (k)

5 Omin(m,n)

x52min(m,n)

­h̃m9n9l9
a9b9 (k)

­Ñm9n9
a9b9,x(k)

­Ñm9n9
a9b9,x(k)

­C̃mn
a b,x(k)

­C̃mn
a b,x(k)

­c̃mnl
a b (k)

, tives ­h̃m9n9l9
a9b9 ( p dk)/­c̃mnl

a b ( p dk) or ­h̃tp/­c̃sp .

k 5 p dk, p 5 1, ..., N 2 1, (A1) APPENDIX B: ANALYTICAL EXPRESSIONS FOR
­h91i/­h5j , ­h92i/­h5j AND ­h95i/­h5j

where Ñ mn
a b,x and C̃ mn

a b,x are the x transforms [7, 12] of
We define ­h9000

ss (i dr)/­h011
1s ( j dr) as ­h91i/­h5j . However,h̃mnl

a b and c̃mnl
a b , respectively, and

as explained in the text, ­h̃000
ss ( p dk)/­c̃011

1s ( p dk) is zero
and it follows from Eq. (11a) that

­h̃m9n9l9
a9b9 (k)

­Ñ m9n9
a9b9,x(k)

5(2l 1 1) Sm9 n9 l9

x 2x 0
D , (A2a)

­h91i

­c5j
5 0. (B1)

­C̃ mn
a b,x(k)

­c̃mnl
a b (k)

5Sm n l

x 2x 0
D . (A2b)

The other two partial derivatives are given by

The partial derivatives ­Ñ m9n9
a9b9,x(k)/­C̃ mn

a b,x(k) can be evalu-
ated as follows. The OZ equation for a multicomponent ­h92i

­h5j
5

j
iN

[V(i 1 j) 1 V(i 2 j)]system is expressed as the set of matrix equations

1
1
if

[P(i 1 j) 2 P(i 2 j)], (B2a)k 5 (2)xr, (A3a)

Ñx 5 C̃xkC̃xẼx , (A3b)
­h920

­h5j
5

2f j
N 2 «( j) 2

2
N

V( j), (B2b)
Ẽx 5 [U 2 kC̃x]21, (A3c)
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where h000
m1(0) 5 21 2 c000

m1(0)

p 4frs Ey

0
r2 c000

1s (r)h000
ms (r) dr

V(L) 5 ON21

p51
S ­h̃2p

­(2Ic̃5p)
D sin( pLf/N), (B2c)

1
4frs

3
Ey

0
r2 c011

1s (r)h011
ms (r) dr (C1)

P(L) 5 ON21

p51

1
p S ­h̃2p

­(2Ic̃5p)
D sin( pLf/N), (B2d)

1 4fr1 Ey

0
r2 c000

11 (r)h000
m1(r) dr

1 4fr2 Ey

0
r2 c000

12 (r)h000
m2(r) dr.«(L) 5 ON21

p51
p S ­h̃2p

­(2Ic̃5p)
D cos( pLf/N), (B2e)

It should be noted that
and

h000
ms (r) 5 21, h011

ms (r) 5 0, for r , (dm 1 ds)/2, (C2a)

h000
m1(r) 5 21, for r , (dm 1 d1)/2, (C2b)­h95i

­h5j
5 2

j
iN

[J(i 1 j) 1 J(i 2 j)]
h000

m2(r) 5 21, for r , (dm 1 d2)/2, (C2c)

1
N

i2f 2 [U(i 1 j) 2 U(i 2 j)]
and c011

1s (r), c000
11 (r) and c000

12 (r) are long-ranged. Since
c000

1s (r) is short-ranged, in the limit dm R y h000
ms (r) can be

1
1

i2f
[(i 1 j)C(i 1 j) 2 (i 2 j)C(i 2 j)], (B3a) replaced by (21). Thus,

4frs Ey

0
r2c000

1s (r) h000
ms (r) dr p 2 rs c̃000

1s (0). (C3)­h950

­h5j
5 0, (B3b)

Since h011
ms (r) is zero except for very large r, c011

1s (r) R
2eq1/(kBTr2) and we obtainwhere

4frs

3
Ey

0
r2c011

1s (r)h011
ms (r) dr R 2

4feq1 rs

3kBT
Ey

0
h011

ms (r) dr.
J(L) 5 ON21

p51
S­h̃5p

­c̃5p
D cos( pLf/N), (B3c)

(C4)

Q(L) 5 ON21

p51

1
p2 S­h̃5p

­c̃5p
D cos( pLf/N), (B3d) Here, we define the two short-ranged functions by

c000;SR
11 (r) 5 c000

11 (r) 1
q2

1

rkBT
(1 2 exp(2r)), (C5a)C(L) 5 ON21

p51

1
p S­h̃5p

­c̃5p
D sin( pLf/N), (B3e)

c000;SR
12 (r) 5 c000

12 (r) 1
q1q2

rkBT
(1 2 exp(2r)). (C5b)

I 5 Ï21 and both (2Ic̃5p) and (2Ih̃5p) are real. For
simplicity, ­(2Ih̃5p)/­(2Ic̃5p) is written as ­h̃5p/­c̃5p. For

It should be noted that exp(2r)/r is also a short-rangedexample, the analytical expressions for ­h̃2i/­c̃7j and ­h̃8i/
function. Then, it can be shown that­c̃7j have the same forms as that for ­h̃2i/­c̃5j .

We note that these final forms are amenable to direct
application of the FFT technique. 4fr1Ey

0
r2 c000

11 (r)h000
m1(r) dr

1 4fr2 Ey

0
r2 c000

12 (r)h000
m2(r) dr

(C6)
APPENDIX C: c000

m1(0) AND c000
m2(0) IN THE

LIMIT dm R `

p 2r1 c̃000;SR
11 (0) 2 r2 c̃000;SR

12 (0)
Consider a mixture of dipolar and charged hard spheres

near a large macroparticle. When c0nn
ab (r) is short-ranged

2
4fq1

kBT
Ey

0
r[r1q1h000

m1(r) 1 r2q2h000
m2(r)] dr,

and h0nn
mb (r) 5 0 for r , (da 1 db)/2, then c0nn

ab (r)h0nn
mb (r) p

0 in the limit dm R y. Hence from the OZ equation we
write where r1q1 1 r2q2 5 0. Substituting Eqs. (C3), (C4) and
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(C6) into Eq. (C1) yields a desired result. The limiting in the form of sine transforms. For example, ­h92i/­h1j is
given bybehavior of c000

m2(0) can also be analyzed in a similar
manner.

Here, for simplicity, we assume that the anions and cat- ­h92i

­h1j
5 2

Ï3rs

N FON21

m51
(2I)H̃ 01

ss (m dk) sin F(i 2 j)
mf
N GG ,ions are equally charged (q1 5 2q2 and r1 5 r2) and get

( j 5 1, ..., N 2 1; i 5 0, ..., N 2 1) (D2a)c000
m1(0) p 21 1 rs c̃000

1s (0) 1 r1 c̃000;SR
11 (0)

1 r2 c̃000;SR
12 (0) 2 L, (C7a) ­h92i

­h10
5 2

Ï3rs

4N FON21

m51
(2I)H̃ 01

ss (m dk) sin Simf
N DG ,

c000
m2(0) p 21 1 rs c̃000

2s (0) 1 r1 c̃000;SR
12 (0)

( j 5 0; i 5 0, ..., N 2 1), (D2b)
1 r2 c̃000;SR

22 (0) 1 L, (C7b)
where (2I)H̃ 01

ss (m dk) is real and we have used
­h011(1)

ws ( j dk)/­N 01(1)
ws ( j dk) 5 2Ï3. As another example,where

­h93i

­h2j
5

rs

Ï3N
FON21

m51
(2I)H̃ 01

1s(m dk) sin F(i 2 j)
mf
N GG ,L 5 2

4feq1 rs

3kBT
Ey

0
h011

ms (r) dr

( j 5 1, ..., N 2 1; i 5 0, ..., N 2 1) (D3a)
2

4fr1q2
1

kBT
Ey

0
r(h000

m1(r) 2 h000
m2(r)) dr. (C8)

­h93i

­h20
5

rs

4Ï3N
FON21

m51
(2I)H̃ 01

1s(m dk) sin Simf
N DG ,

We note for an inert macroparticle and for anions and
cations of equal diameter that h011

ms (r) 5 0, h000
m1(r) 5 ( j 5 0; i 5 0, ..., N 2 1), (D3b)

h000
m2(r) and L 5 0.

where (2I)H̃ 01
1s(m dk) is real and ­C 01(1)

ws ( j dk)/
APPENDIX D: ANALYTICAL EXPRESSIONS ­c011(1)

ws ( j dk) 5 21/Ï3.
FOR ­h9ti/­hsj We note that these expressions are compact in spite of

the complexity of the basic equations and can be calculated
It should be emphasized that ­c (1)

sj /­hsj 5 21 leads to quite efficiently using the FFT technique.
significant reduction of the analytical expressions. For s 5
2 and/or t 5 2, special considerations are needed because ACKNOWLEDGMENTS
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r2

N FON21

m50
H̃ 00

12(mdk)cosSui2 ju mf
N D2H̃ 00

12(0)/2G ,
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